1 research outputs found

    Bio-Heat Transfer and Monte Carlo Measurement of Near-Infrared Transcranial Stimulation of Human Brain

    Full text link
    Transcranial photobiomodulation is an optical method for non-invasive brain stimulation. The method projects red and near-infrared light through the scalp within 600-1100 nm and low energy within the 1-20 J/cm2 range. Recent studies have been optimistic about replacing this method with pharmacotherapy and invasive brain stimulation. However, concerns and ambiguities exist regarding the light penetration depth and possible thermal side effects. While the literature survey indicates that the skin temperature rises after experimental optical brain stimulation, inadequate evidence supports a safe increase in temperature or the amount of light penetration in the cortex. Therefore, we aimed to conduct a comprehensive study on the heat transfer of near-infrared stimulation for the human brain. Our research considers the transcranial photobiomodulation over the human brain model by projecting 810 nm light with 100 mW/cm2 power density to evaluate its thermal and optical effects using bioheat transfer and radiative transfer equation. Our results confirm that the near-infrared light spectrum has a small incremental impact on temperature and approximately penetrates 1 cm, reaching the cortex. A time-variant study of the heat transfer was also carried out to measure the temperature changes during optical stimulation.Comment: The complete geometry proposed in this work is available for download. The proposed geometry is in STL and MPHBIN formats, and the model is surrounded by air. All the tissues are available and assembled, and it is recommended to use the transparency tool to acquire a better observation. Please cite this publication when referencing this materia
    corecore